?

Log in

No account? Create an account

БОЛЬШОЙ КОСМИЧЕСКИЙ ОБМАН США

ГЛАВА 22. ВЕЛЮРОВ И ДРУГИЕ О ЖРД США - МИФЫ И РЕАЛЬНОСТЬ
neprohogi
http://www.free-inform.ru/pepelaz/pepelaz-13-F1.htm
Велюров используя тот же метод расчета, ту же компьютерную программу, что и в случае с хорошим, американским ЖРД Н-1b получил неутешительные результаты расчета для плохого, американского ЖРД F-1:
"Результаты расчета
Поскольку камера сгорания ЖРД F-1 представляет собой почти прямую трубу с небольшим сужением до критического сечения (т.е. почти полутепловое сопло), то тепловые потоки вдоль всей камеры сгорания примерно одинаковы и лежат в диапазоне 10,7...11,5[МВт/м²]
Максимальный тепловой поток составил Q ≈ 11,5 [МВт/м²]
Расчетный максимум расположен в цилиндрической (дозвуковой) части камеры: S ≈ 1,24
Из-за конструктивных особенностей системы охлаждения (U-образный реверс) температурное поле стенок в плоскости одного сечения является неравномерным, как бы «волнистым», наблюдается чередование: реверсные трубки на ~3...4% горячее аверсных трубок.
Результаты расчета однозначно указывают на то, что двигатель работает на запредельных режимах:
1. На всем протяжении камеры сгорания до критического сечения температура стенки со стороны керосина Tст.ж существенно превышает установленный согласно пп.3.1.1.5.4 рекомендаций NASA SP-8087 («Liquid rocket engine fluid-cooled combustion chambers», NASA SP-8087, 1972 г.) порог коксования керосина Tст.ж > 728 К

В цилиндрической части температура коксования превышена более чем на сто градусов! Максимум Tст.ж ≈ 830 К
При таких температурах керосин в пристеночном слое безусловно не является химически нейтральной не кипящей жидкостью ‒ он начнет энергично разлагаться на тяжелые смолистые осадки и легкие газовые фракции.
Тяжелые смолистые осадки, которые осаждаются на стенках трубок, имеют на два порядка более низкую теплопроводность, чем сталь.
Простейшие оценки показывают, что налипание тончайшего слоя смолистых осадков толщиной всего 0,005 мм равнозначно утолщению вдвое стальной трубки толщиной 0,45 мм, применяемой в камере ЖРД F-1. Поэтому коксование керосина приведет к падению теплопередачи через стенки трубок в охлаждающую жидкость и прогару по всему периметру сечения.
Полагая, что трубка имеет наружный диаметр ~ 27,78 мм (13/32 дюйма), огневую сторону составляет примерно ¼ дуги окружности трубки, длина камеры ЖРД F-1 до критического сечения ~ 1 м, то для образования смолистого слоя толщиной 0,005 мм при плотности ρ ≈ 1,2 г/см³ достаточно осаждение всего 0,13 г смолы!
Помимо этого, газообразные продукты коксования керосина могут создавать газовые пробки в узких трубчатых каналах и существенно снижать скорость и плотность проточного охладителя (керосина), что приведет к тем же фатальным последствиям ‒ прогару камеры.
2. Температура огневой стороны стенки на всем протяжении камеры сгорания до критического сечения превышает Tст.г > 900 К
На отдельных участках в цилиндрической части камеры температура огневой стороны стенки превышает Tст.г > 1000 К
Подобный температурный режим является недопустимым для паяной трубчатой конструкции камеры данного ЖРД.
Согласно американских данных («Industrial Gold Brazing Alloys» ,Gold Bulletin 1971 Vol. 4 No. 1) – при изготовлении «лунной» серии двигателей, в т.ч. F-1 и др., – широко применялся золотой припой состава 82,5% Au − 17,5% Ni
При температурах свыше Tст.г > 540ºС ( 813 К ) этот припой резко терял прочность:

Из таблицы видно, что при Т = 650°С предел прочности (UTS) сплава примерно в 2,5 раза ниже, чем при Т = 540°С
ВЫВОД: вышеизложенные недостатки свидетельствуют о недопустимости тепловых режимов для данной конструкции ЖРД F-1.
Данный агрегат не может быть использован при полном давлении на входе в сужение сопла Pоо ≈ 69 кгс/см² без риска фатальных последствий и подлежит дефорсированию либо существенному изменению технологии изготовления камеры ЖРД."
Оспорить такие выводы, основанные на инструкциях и методиках НАСА невозможно. Автор, что называется, их же салом и им по сусалам!